Name \qquad Class \qquad

MATH SKILLS

Half-Life

If 100.0 g of carbon-14 decays until only 25.0 g of carbon is left after 11460 y , what is the half-life of carbon-14?

1. List the given and unknown values.

$$
\begin{aligned}
\text { Given: } & \text { initial mass of sample }=100.0 \mathrm{~g} \\
& \text { final mass of sample }=25.0 \mathrm{~g} \\
& \text { total time of decay }=11460 \mathrm{y} \\
\text { Unknown: } & \text { number of half-lives }=\text { ? half-lives } \\
& \text { half-life }=? \mathrm{y}
\end{aligned}
$$

2. Write down the equation relating half-life, the number of half-lives, and the decay time, and rearrange it to solve for half-life.

$$
\begin{aligned}
& \text { total time of decay }=\text { number of half-lives } \times \frac{\text { number of years }}{\text { half }- \text { life }} \\
& \qquad \frac{\text { number of years }}{\text { half }- \text { life }}=\frac{\text { total time of decay }}{\text { number of half }- \text { lives }}
\end{aligned}
$$

3. Calculate how many half-lives have passed during the decay of the 100.0 g sample.

$$
\begin{aligned}
& \text { fraction of sample remaining }=\frac{\text { final mass of sample }}{\text { initial mass of sample }}=\frac{25.0 \mathrm{~g}}{100.0 \mathrm{~g}}=\frac{1}{4} \\
& \text { after one half-life }=\frac{1}{2} ; \text { after two half-lives }=\frac{1}{2} \times \frac{1}{2}=\frac{1}{4} \text { of sample }
\end{aligned}
$$

Two half-lives have passed.
4. Solve for the half-life.

$$
\frac{\text { number of years }}{\text { half }- \text { life }}=\frac{11460 \mathrm{y}}{2 \text { half }- \text { lives }}=\frac{5730 \mathrm{y}}{\text { half }- \text { life }}
$$

half-life of carbon-14 $=5730 \mathrm{y}$

Your Turn to Think

1. What is the half-life of a 100.0 g sample of nitrogen- 16 that decays to 12.5 g of nitrogen-16 in 21.6 s ?
2. All isotopes of technetium are radioactive, but they have widely varying half-lives. If an 800.0 g sample of technetium- 99 decays to 100.0 g of technetium-99 in 639000 y , what is its half-life?
3. A 208 g sample of sodium- 24 decays to 13.0 g of sodium -24 within 60.0 h . What is the half-life of this radioactive isotope?
\qquad Class \qquad

MATH SKILLS

Half-Life continued

Sample Problem

Thallium-208 has a half-life of 3.053 min . How long will it take for 120.0 g to decay to 7.50 g ?

1. List the given and unknown values.

$$
\begin{aligned}
\text { Given: } & \text { half-life }=3.053 \mathrm{~min} \\
& \text { initial mass of sample }=120.0 \mathrm{~g} \\
& \text { final mass of sample }=7.50 \mathrm{~g} \\
\text { Unknown: } & \text { number of half-lives }=? \text { half lives } \\
& \text { total time of decay }=?
\end{aligned}
$$

2. Write down the equation relating half-life, the number of half-lives, and the decay time, and rearrange it to solve for the total time of decay.

$$
\text { total time of decay }=\text { number of half-lives } \times \frac{\text { number of } \min }{\text { half }- \text { life }}
$$

3. Calculate how many half-lives have passed during the decay of the 120.0 g sample.
fraction of sample remaining $=\frac{7.50 \mathrm{~g}}{120.0 \mathrm{~g}}=0.0625=\frac{1}{16}$
after one half-life $=\frac{1}{2}$; after two half-lives $=\frac{1}{2} \times \frac{1}{2}=\frac{1}{4}$;
after three half-lives $=\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}=\frac{1}{8}$; after four half-lives $=$ $\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}=\frac{1}{16}$ of sample. Four half-lives have passed.
4. Solve for the half-life.
total time of decay $=4$ half-lives $\times \frac{3.053 \mathrm{~min}}{\text { half }- \text { life }}$
total time of decay $=12.21 \mathrm{~min}$

Your Turn to Think

4. If the half-life of iodine- 131 is 8.10 days, how long will it take a 50.00 g sample to decay to 6.25 g ?
5. The half-life of hafnium-156 is 0.025 s . How long will it take a 560 g sample to decay to one-fourth its original mass?

Name \qquad Date \qquad Class \qquad

MATH SKILLS

Half-Life continued

6. Chromium- 48 has a short half-life of 21.6 h . How long will it take 360.00 g of chromium-48 to decay to 11.25 g

Sample Problem

Gold-198 has a half-life of 2.7 days. How much of a 96 g sample of gold-198 will be left after 8.1 days?

1. List the given and unknown values.

$$
\begin{aligned}
\text { Given: } & \text { half-life }=2.7 \text { days } \\
& \text { total time of decay }=8.1 \text { days } \\
& \text { initial mass of sample }=96 \mathrm{~g} \\
\text { Unknown: } & \text { number of half-lives }=? \text { half-lives } \\
& \text { final mass of sample }=? \mathrm{~g}
\end{aligned}
$$

2. Write down the equation relating half-life, the number of half-lives, and the decay time, and rearrange it to solve for the number of half-lives.

$$
\begin{gathered}
\text { total time of decay }=\text { number of half-lives } \times \frac{\text { number of days }}{\text { half }- \text { life }} \\
\text { number of half-lives }=\frac{\text { total time of decay }}{\frac{\text { number of days }}{\text { half }- \text { life }}}
\end{gathered}
$$

3. Calculate how many half-lives have passed during the decay of the 96 g sample.

$$
\text { number of half-lives }=\frac{8.1 \text { days }}{\frac{2.7 \text { days }}{\text { half }- \text { life }}}=3.0 \text { half-lives }
$$

4. Calculate how much of the sample will remain after 3.0 half-lives.

$$
\text { final mass of sample }=\text { initial mass of sample } \times \text { fraction of sample remaining }
$$

fraction of sample remaining after three half-lives $=\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}=\frac{1}{8}$
final mass of sample $=96 \mathrm{~g} \times \frac{1}{8}=12 \mathrm{~g}$

Your Turn to Think

7. Potassium- 42 has a half-life of 12.4 hours. How much of an 848 g sample of potassium- 42 will be left after 62.0 hours?
\qquad
\qquad
\qquad

MATH SKILLS

Half-Life continued

8. Carbon-14 has a half-life of 5730 y . How much of a 144 g sample of carbon-14 will remain after $1.719 \times 10^{4} \mathrm{y}$?
9. If the half-life of uranium- 235 is $7.04 \times 10^{8} \mathrm{y}$ and 12.5 g of uranium- 235 remain after $2.82 \times 10^{9} \mathrm{y}$, how much of the radioactive isotope was in the original sample?
